Cookies settings

We use cookies so we can gather information about our users (you) and their preferences about what is interesting and what is not. You can set the cookie handling in detail below. What cookies are and how we use them?

Antiadhesive bionic combs for handling of nanofibers

25.10.2019

Elmarco has joined the BioCombs4Nanofibers project. The vision of the project is to adapt and convert the biological nanostructures into a technical process to create future tools and devices with controlled antiadhesive properties to handle and process nanofibers.

To overcome the major problem for handling of nanofibers, namely their stickiness to almost any surface, we propose here to get inspiration from cribellate spiders. They bear a specialized comb-like tool, the calamistrum, to handle and process nanofibers. Their 10 – 30 nm thick fibers, used as adhesive to capture prey, do not stick to the calamistrum due to a special fingerprint-like nanostructure covering the surface of the comb.

In BioCombs4Nanofibers we will demonstrate the radically new technology by implementing advanced laser-induced nanostructures to mimic the fingerprint-nanostructures of cribellate spiders with a periodicity between 100 and 200 nm.

BioCombs4Nanofibers flyer  BioCombs4Nanofibers flyer - 3 000 kB

 

Partners of the project:

  • JKU - Johannes Kepler Universität Linz, Austria
  • RWTH - Rheinisch-Westfälische Technische Hochschule Aachen, Germany
  • FORTH - Institute of Electronic Structure and Laser, Greece
  • BAM - Bundesanstalt für Materialforschung und -prüfung, Germany
  • INFLPR - National Institute for Laser, Plasma & Radiation Physics, Romania
  • ELM - Elmarco, Czech Republic

The BioCombs4Nanofibers project is supported by EU Horizon 2020, FET-Open Challenging Current Thinking.

 

Why are nanofibres so valued and where do they help?

Nanofibres with diameter measured in nanometers can be made from a variety of polymers and therefore can achieve various physical properties and application potential. All polymer nanofibres are unique due to their large surface-to-volume ratio, high porosity, noticeable mechanical strength and flexibility compared to their microfibre counterparts.

If you are looking for a material that is both durable and flexible, nanofibre is a clear choice.

Compared to conventional fibres, nanofibres are lightweight, have a small diameter and variable pore structure, making them ideal for use in a variety of industries, such as air filtration, liquid filtration, protective clothing manufacturing, tissue engineering, functional materials manufacturing and energy storage.

In addition, they are so variable that they can be made of both synthetic and natural materials.   There are, for example, carbon, polymer, graphite, collagen or cellulose nanofibres, and we have not yet listed all the alternatives.

Where do the nanofibres help?

Thanks to their unique physical properties, nanofibres can be used in many areas of human activity. It's not just ultra-fine masks and filters for respirators – nanofibres are helping also elsewhere. 

Air filtration

By simply adding thin coatings of electrospun nanofibers to traditional filtration substrates, the filtration performance is enhanced several fold. Nanofibers dramatically improve filtration efficiency, they have low initial and persistent pressure drop and enables possibility to optimize the interaction between flow, efficiency and filter life.

Liquid filtration

In the field of liquid filtration, nanofibre membranes with pores capable of capturing even the smallest harmful particles are used. Due to the high surface-to-volume ratio and the noticeable surface tension, particles smaller than 1 micrometer are captured. Nanofibre filter technology helps, among other things, in third world countries, where it is necessary to filter polluted water so that it is drinkable and healthy.

Tissue engineering

In the tissue engineering, nanofibres are used to produce scaffolds that support the growth, multiplication and reproduction of the biological tissue to be replaced. They are most often used to cover and heal burns and to control the release and transport of drugs into damaged tissue. The inherent biodegradability of the scaffold allows tissue transplantation and healing without the need for surgical removal of the nanofibre scaffolding.

Textile industry

Nanofibres have also found application in leisure functional clothing. Nanofibre microporous membranes have the potential to provide the wearer with thermal comfort, a better level of water resistance, and, at the same time, efficiently dissipate vapours.

Photovoltaics and the automotive industry

In the power industry, choosing the right polymer allows electrons or ions to be conducted, making nanofibres interesting for energy production and storage. In this area, nanofibres can be used for photovoltaic panels, battery storage systems and capacitors. The application of nanofibres to rechargeable batteries using silicon properties is currently being considered. This would improve the efficiency of lithium batteries present in plug-in electric vehicles. Nanofibres are already used in the automotive industry to produce more efficient automotive filters.

Military technology

In the military, nanofibres are used to improve the ability to detect chemical and biological agents. Nanofibre-enriched garments improve the protection of military personnel through their ability to filter and decompose toxins. This particular area of application has given rise to self-cleaning personal protection equipment. These mainly include masks composed of two "layers." The first is used to filter the air, while the second contains activated carbon, which absorbs harmful gases and impurities.